Waste to value: the use of black soldier fly frass for sustainable soil health and food production

Sun Kumar Gurung¹, Bede S. Mickan^{1,2}, Jen Middleton¹, Sasha N. Jenkins¹, Zed Rengel¹, Kadambot H.M. Siddique^{1,2} and Zakaria M. Solaiman^{1,2}

¹UWA School of Agriculture and Environment, and

² The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia

promote circular economy (Klammsteiner et al. 2020, Fig.1)

Research objective

 This experiment was performed to find a viable solution to high BSF production in the preparedness of high volumes of frass to manage large scale BSF protein production.

Figure 1 Role of black soldier fly in circular economy.

Results

- Shoot dry weight, root dry weight, shoot N concentration and Shoot N content were significantly increased with increasing BSF frass rate.
- Soil pH, NH_4^+ , NO_3^- , microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were increased with the application of BSF frass.
- BSF frass amendment significantly altered the relative abundance of Acidobacteria (P< 0.001), Firmicutes (P< 0.001), Proteobacteria (P< 0.01) and Bacteroidetes (P= 0.02) (Fig. 2).
- The relative abundance of putative denitrification genes (*nirK* and *nosZ*) increases, representing N loss as N_2O and N_2 .
- Soil bacterial community composition by PERMANOVA indicated significant community separation due to BSF frass treatment (P< 0.001). (Fig. 3).

• The results indicate that soils amended with BSF frass is highly beneficial for enhancing soil fertility and potentially maintaining agricultural production sustainability.

Reference

 Klammsteiner T, Turan V, Fernandez-Delgado Juarez M, Oberegger S, Insam H (2020) Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy 10 (10):1578

Acknowledgment

 Australian Pork, Dairy Australia, Agrifutures, Australian Eggs, Australian Meat Processor Corporation, Future Green Solutions and Queensland government (Department of Agriculture and Fisheries)

Figure 3 Canonical correspondence analysis (CCA) biplot showing the relationship between soil amendments and measured plant and soil variables. Coloured ellipses separate the samples by frass rate.

Sun Kumar Gurung Sunkumar.gurung@research.uwa.edu.au